
RD-A144 335 A COMPUTATIONAL LOGIC WITH QUANTIFIERS(U) TEXAS UNIV AT i/i
AUSTIN INSTSFOR COMPUTING SCIENCE AND COMPUTER
APPLICATIONS R S BOYER ET AL. JUL 84 N00@14-8i-K-0634 N

UNCLASSIFIED F/G 12/1 N

11111u 1.02.0j

IIIJII25

MICROCOPY RESOLIONTS HR

NAIOALBUEA OFb SIAN RS16-

In

Mv A COMPUTATIONAL LOGIC WITH QUANTIFIERS

Robert S. Boyer and J Strother Moore

U DRAFT JULY 1984 DRAFT DRAFT DRAFT DRAFT

CL.:

The research reported here was supported by National Science Foundation Grant MCS-8202g43 and
Office of Naval Research Contract N00014-81-K-0634.

I'Mh-, do-i'm -:it hi~s been =approved
for p.:Lli: TA.-oae cad sale; its
distibution is UT'limited.

Institute for Computing Science and Computer Applications
The University of Texas at Austin

Austin, Texus 78712

84 07 24 013

Table of Contents
1. The Formal Syntax I

I.I. Syntax 1
1.2. Syntactic Concepts 3

2. The Formal Theory 10
2. 1. TRUE, FALSE, IF and EQUAL 10
2.2. Natural Numbers 11
2.3. Ordered Pairs 12
2.4. Literal Atoms 12
2.5. Negative Integers 12
2.6. Ordinals 12
2.7. Basic Meta Axioms 14
2.8. Induction 14
2.9. The Shell Principle 15
2.10. The Principle of Definition 16
2.11. The Principle of Reflection 16
2.12. The Principle of Declaration 17
2.13. Useful Function Definitions 17
2.14. The Interpreter 19
2.15. Quantification 20

3. The Implemented Syntax 21
3.1. Examples of the Implemented Syntax 22
3.2. Some Preliminary Conventions 25
3.3. The Formal Definition of LEXEMES 26
3.4. The Formal Definition of PARSE and READ 29
3.5. The Formal Definition of TRANSLATE and ISYNTAX 32

Id:, -

• I

1. The Formal Syntax
The theory with which the theorem prover deals is presented in this and the next two Sections. This

account supercedes and makes obsolete all previous accounts.

A logical theory consists of a language, some axioms or axiom schemas, and some rules of inference.
However, in developing the proofs of interesting theorems it is often necessary to introduce axioms
defining new concepts and operations. Logically speaking, the main results and all of the lemmas along
the way are proved in the final theory ,But practically speaking, the theory in which one is working
"evolves as time goes by.*

-:>To accomodate the practical view of the situation we provide several *extension principles' by which
the user of the theory can add new axioms of a particularly constructive sort. Among these principles is
the 'shell principle," which permits the axiomatization of a "new' type of inductively constructed object,
and the 'definitional principle,' which permits the introduction of an equation defining a recursive
function. These extension principles can be considered as rules of inference since they permit one to
deduce that certain formulas are theorems.

Our presentation of the theory is organized as follows.

In this Section e present the formal syntax of our logic. This syntax is extremely simple ard is not the
syntax implemented in the theorem-prover. We then develop a large number of syntactic conventions
used to describe the axioms and rules of inference._

In the next Section we present the axioms and the rules of inference.

XOnce we have completed the formal development of the logic we turn, in Section
IMPLEMENTEDSYNTAX, to a description of the implemented syntax.

1.1. Syntax

The variables and function symbols of our language are taken from the set of 'symbols' defined below.

A sequence of characters, s, is a symbol if and only if (i) s is nonempty, (ii) each character in s is a
member of the set:

{ABCDEFGH I JKLMNOPQRSTUVWXYZ
0123456789

(iii) the first character of s is not a digit or hyphen.

Examples: PLUS, ADDI, X, and PRIME-FACTORS are symbols and thus are also variable symbols and
function symbols. A/B, 123, and IAB are not.

Associated with every function symbol is a nonnegative integer called the arity of the symbol. The arity
indicates how many argument terms must follow each application of the function symbol. The arity of
each primitive function symbol is given in the table below. We also include brief descriptive comments in
the hopes that they will make subsequent examples more meaningful.

symbol arity coment

ADD1 1 successor function for natural numbers
ADD-TO-SEr 2 adds an element to a list If not present
AND 2 logical and
APPEND 2 list concatenation

2

APPLY 2 application of function to arguments
ARITY 1 number of arguments expected by function
CAR 1 first component of ordered pair
CDR 1 second component of ordered pair

2 constructs ordered palrs
CaUM 1 size of a shell object
DIFFRNC 2 difference of tlo natural numbers
EWU 2 equality predicate
FALSE 0 false object
FALSEP 1 predicate for recognizing FALSE
FIX 1 coerces argument to 0 if not numeric
FOR 6 general purpose quantifier
GE 2 greater than or equal on natural numbers

REATERP 2 greater than on natural numbers
IF 3 if-then-else
IMPLIES 2 logical implication
INTERP 3 subroutine of IWTEPREr
IWIUPREr 2 evaluates tame forms in the logic
INTRPRE-LIST 2 evaluates a list of tame forms
LAST I last CDR of an object
LENfI I length of a list
LBQ 2 less than or equal on natural numbers
LESSP 2 less than on natural numbers
LISTP I recognizes ordered pairs
LITATON I recognizes literal atm
LOCKUP 2 looks up value of atom in alist
MAX 2 maximum of to natural numbers
MEE 2 membership predicate
KINUS 1 constructs negative of a natural number
NEGATIVEP I recognizes negatives
?EATIVE-GUTS 1 absolute value of a negative
NLISTP I negation of LISTP
NOT 1 logical negation

1 recognizes natural numbers
OR 2 logical or
ORDINALP 1 recognizes ordinals
ORDP I a subfunction of ORDINALP
ORD-LESSP 2 less than on ordinals up to epsilono

PAC 1 constructs a literal atom from print name
PUS 2 sun of two natural numbers
UA1rIFI--INITIAL-VALUE

1 initial value of a quantifer
gUANTIFIER-OPERATION

3 operation performed by quantifier
QUOTIENr 2 natural quotient of two natural numbers
RDAINDER 2 mod
531 1 predecessor function on natural numbers
TANE-FORMP 1 subroutine of INTP
TIM 2 product of two natural numbers
TRUE 0 true object
TRUE I recognizes TRUE
SUBSEIP 2 subset predicate

11W I subroutine of INTP
UNION 2 union of two lists
UNPAC 1 explodes litaom Into print name
ZEO 0 0

I recognizes 0 and non-natural numbers

The arity of each user-introduced function symbol is declared when the symbol is first used as a function
symbol.

A term is either a variable symbol or else is a sequence consisting of a function symbol of arity n
followed by n terms. We enclose non-variable terms in parentheses.

Examples: The following are terms:

(ZERO)

(ADD)

(PUB (AD)i0 (ZERO))

(IF B
(ZERO)
(ADDI X))

We present our axioms as formulas in the familiar syntax of propositional calculus with equality.

1.2. Syntactic Concepts

To talk about terms, it is convenient to use so-called Ometavariables' that are understood by the reader
to stand for certain variables, function symbols, or terms. In this document we use lower case words to
denote metavariables.

Example: If f denotes the function symbol PLUS, and t denotes the term (ADDI Y), then (f t X) denotes
the term (PLUS (ADDI Y) X).

If i is an integer, then by an abuse of notation we let Xi denote the variable whose first character is X
and whose other characters are the decimal representation of i.

Example: If i is 4, Xi is the variable symbol X4.

A term t is a call of fn with arguments a1 ..., an iff t has the form (fa a1 ... a).

If a term t is a call of fn we say fn is the !M function symbol of t. A function symbol fn is called in a
term t iff either t is a call of fn or t is a nonvariable term and fn is called in an argument of t. The

subterms of a term t is {t) if t is a variable symbol and otherwise is the union of {t) together with the
union of the subterms of the arguments of t. The variables of a term t is the set of variable subterms of
t.

Example: The term (PLUS X Y) is a call of PLUS with arguments X and Y. PLUS is called in (IF A
(PLUS X Y) B). The set of subterms of (PLUS X Y) is ((PLUS X Y), X, Y). The set of variables of
(PLUS X Y) is (X Y).

A finite set s of ordered pairs is said to be a substitution provided that for each ordered pair <v,t> in
s, v is a variable, t is a term and no other member of s has v as its first component. The result of
substituting a substitution s into a term p (denoted p/s) is the term obtained by simultaneously replacing,
for each <v,t> in s, each occurrence of v as a variable in p with t. We sometimes say p/s is the result of
instantiatint p with s. We say that a term p' is an instance of p if there is a substitution s such that p' is
p/s.

Example: If s is {(<X,(ADDI Y)> <Y,Z> <G,FOO>) then s is a substitution. If p is the term

(POU X (G Y x))

then p/s is the term

(PIS (ADD1 Y) (G Z (ADO Y))).

Note that even though the substitution contains the pair <G,FOO> the occurrence of G in p was not
replaced by FOO since G does not occur as a variable in p.

4

We adopt the notational convention of sometimes writing a term where a formula is expected (e.g., we
may refer to the "theorem" p, where p is a term). When we write a term p where a formula is expected,
it is an abbreviation for the formula pf=(FALSE).

If a term p is a theorem, then by the rule of instantiation, the result of substituting any substitution into
p is a theorem.

We use the symbols T and F as abbreviations for the terms (TRUE) and (FALSE), respectively. We do
not use T and F as variable symbols.

We say term t is the nth CDR nest around the term x iff n is a natural number and either (i) n is 0 and
t is x or (ii) n>0 and t is (CDR t') where L' is the n-lst CDR nest around x. When we write (CDRn x)
where a term is expected it is an abbreviation for the nth CDR nest around x.

Example: (CDR 2 A) is (CDR (CDR A)).

We say t is the fn nest around b for s iff t and b are terms, fn is a function symbol of arity 2, s is a
finite sequence of terms, and either (i) s is empty and t is b or (ii) s is not empty and t is (fn tj t.) where
ti is the first element of s and t2 is the fn nest around b for the remaining elements of s. When we write
(fn t i ... tj)Ob where a term is expected it is an abbreviation for the fa nest around b for ti, ... , t n.

Examples: The OR nest around F for A, B, and C is the term (OR A (OR B (OR C F))), which may
also be written (OR A B C)OF.

The basic axioms are the axioms and definitions in Section THEORY.

Formula t can be proved directly from a set of axioms A if and only if t may be derived from the
axioms in A by applying the following rules of inference:

" the propositional calculus with equality and function symbols;

" the rule of inference that any instance of a theorem is a theorem; and

* the principle of induction as stated in subsection INDUCTION.

There are five kinds of axiomatic acts: (a) an application of the shell principle (subsection SHELLS), (b)
an application of the principle of definition (subsection DEFNS), (c) an application of the reflection
principle (subsection REFLECT), (d) the declaration of a "new" function symbol (subsection DCL), and (e)
the addition of an arbitrary formula as an axiom.

Each such act adds a set of axioms. The axioms added by an application of the first four acts are
described in the relevant subsections. The axioms added by the addition of an arbitrary formula is the
singleton set consisting of the formula.

A hitory h is a finite sequence of axiomatic acts such that either (i) h is empty or (ii) h is obtained by
concatenating to the end of a history h' an axiomatic act that is *admissible' under h'. An arbitrary
axiom is admissible under any h'. The specification of the shell, definitional, reflection, and declaration
principles define Oadmissiblity" in those instances.

The axioms of a history h is the union of the basic axioms together with the union of the axioms added
by each act in h.

A function symbol fn is new in a history h iff fn is called in no axiom of h. A term t is old in a history h

iff no function symbol called in t is new in h.

The axiomatic act of adding a shell, if admissible, adds a set of axioms that describe a "new" inductively
constructed data type. Each application names a *constructor" function symbol, a "recognizer" function
symbol, and some eaccessors.0 In addition, the application may optionally name a Obottome function
symbol. To describe the admissibility criteria and the axioms added we make the following conventions.

The constructor function symbols of a history h is the union of (ADDI CONS PACK MINUS) and the
set of function symbols consisting exactly of the constructor function symbol of every application of the
shell principle in h. The recognizer function symbols of a history h is union of (TRUEP FALSEP
NUMBERP LISTP LITATOM NEGATIVEP) and the set consisting exactly of the recognizer function
symbol of every application of the shell principle in h. The bottom function symbols of a history h is
union of {TRUE, FALSE, ZERO) and the set consisting exactly of the bottom function symbol of every
application of the shell principle in h for which a bottom function symbol was supplied.

We say r is the 1M of fn iff either (i) r is given as the type of fn in the table below or (ii) fn is a
constructor or bottom function symbol introduced in the same axiomatic act in which r was the recognizer
function symbol.

fn type of fn

ADDI

COM LISP
PAC LITATCH
MUS IEATIVEP

A I restriction over a set of function symbols s is a pair <fg,s'> where fig is either the word ONE-
OF or NONE-OF and a' is a finite sequence every element of which is an element of s.

A function symbol fn satisfies a type restriction <figs',> iff either fig is ONE-OF and fn is an element
of s' or fig is NONE-OF and fig is not an element of s'.

We say t is the != restriction term for a type restriction <flg,(r, ... rn)> and the variable symbol v iff
fig is ONE-OF and t is (OR (r i v) ... (r v))OF or fig is NONE-OF and t is (NOT (OR (r1 v) ... (ru

v))OF).

Examples: Let tr, be the pair <ONE-OF,(LISTP LITATOM)>. Then tr1 is a type restriction over the
set (NUMBERP LISTP LITATOM). The function symbol LISTP satisfies trI but the function symbol

NUMBERP does not. The type restriction term for tri and Xl is (OR (LISTP Xl) (OR (LITATOM X1)
F)). Let tr, be the pair <NONE-OF,(NUMBERP)>. Then tr2 is a t)pe restriction over the set
{NUMBERP LISTP LITATOM). The function symbol LISTP satisfies tr2 but the function symbol
NUMBERP does not. The type restriction term for tr2 and X2 is (NOT (OR (NUMBERP X2) F)).

We say tr is the ith 1M restriction for a constructor function symbol fn iff I < i <_ n and either tr is as
given by the table below or tr is the ith type restriction specified in the axiomatic act in which fn was
introduced.

fn st type restriction 2nd type restriction

(if applicable)

ADDI <ONE, OF, (IMlVER) >
MEN 0MO .OF, 0)> <NM-.OF, 0O>
PAC <NOE.COF, 0>

6

MINM (IE.-CF. (N P))

Below we give the shell axioms for:

constructor const of n r=entsvi ra ptloally, b ttC "function b t)

re Izer r.
accessors ac 1 .. a ,

Me restrictions tr an's
default functions dv dv.

in hitorv h, where const is a function symbol of a arguments, btm (if supplied) is a function symbol of no

arguments, r and the aci are function symbols of 1 argument, the tri are type restrictions over the

recognizers of h together with the symbol r, and the dv i are function symbols of no arguments. In the

formulas below, T should be used for all occurrences of (r (btm)) and F used for all terms of the form

(EQUAL x (btm))), if no btm is supplied.

(1) (OR (AL (r X) T)
(EJWL (r X))).

(r (counst Xl . . Xn)).

(r (OWt)).

(IET (EQUAL (coast Xl ... Xh) (bti))). and

(DIPLIES (AND~ Cr 10(NOT (EQUAL X (OW)

(am (const (ac,)O ... (as X)
));

(2) for each i from I to n, the following formul&;

(I VtUES trt,

(EQUAL (ac, (const X1 ... Xn))
Xi))

where trt is the type restriction term for

tr t and Xi;

(3) for each 1 from 1 to n, the following formula:

(I ILIES (OR (NOT (r X))
(OR (EQUAL X (btm))

(AND (NOr trt,)
(EQJAL X (const Xl ... Xin)))))

(EQUAL (ac, X) (dvi)))
where trt is the type restriction term for
tr, and Xi;

(4) the formulas:

(NOT (r)) and

(Nar (r F));

(5) for each recognizer, r', in the recognizer functions
of h the formula:

7

(MeES (r X) (NT Cr)));

(6) tho finials:(DU'LI (r X)
(EW&A (COUNT7)0(IF (EW&A X (bt.))

(ZERO)
(AMI (PIU (ac,)0

We say t is an explicit value term in a history h iff t is a term and either (i) t is a call of a bottom
function symbol in h, or (ii) t is a call of a constructor function symbol fn in h on arguments al, ... , a. and
for each i from 1 to n, a. is an explicit value term in h and the type of the top function symbol of a,

satisfies the ith type restriction for the constructor function fn. We frequently omit reference to the
history h when it is obvious by context.

Examples: The following are explicit value terms:

(AMl (ADDl (ZEM)))

(COM (PACK (ZE10)) CN MM (Al (ZEROM))))
The term (ADDI X) is not an explicit value. The term (ADDI (TRUE)) is not an explicit value, because
the top function symbol of (TRUE) does not satisfy the type restriction, <ONE-OF, (NUMBERP)>, for
the rust argument of ADDI.

We next develop the notion that certain explicit value terms are the "quotations' of other terms. We
begin by setting up the correspondence between the LITATOMs of the logic and the symbols of our
syntax.

We say a term e is the NUMBERP corresponding to the natural number n iff either (i) n is 0 and e is
(ZERO) or (ii) n is nonzero and e is (ADDI e') where e' is the NUMBERP corresponding to n-1.

Example: The NUMBERP corresponding to 2 is (ADDI (ADDI (ZERO))).

When we write a nonnegative integer, n, where a term is expected, the integer is an abbreviation of the
NUMBERP corresponding to n.

Example: The term (PLUS 2 X) is an abbreviation for (PLUS (ADDI (ADDI (ZERO))) X).

We say a term e is the explosion of a sequence of ASCII characters, s, iff either (i) s is empty and e is
(ZERO) or (ii) s is a character c followed by some sequence s' and e is (CONS i e') where i is the
NUMBERP corresponding to the ASCII code for c and e' is the explosion of a'.

Example: The ASCII codes for the characters A, B, and C are 65, 66, and 67 respectively. Then the
explosion of ABC is:

(anM 66 (aM 66 ((xm 67 0))).

We say the term e is the LITATOM corresponding o a symbol s iff e is the term (PACK e') where e' is
the explosion of s.

When we write a symbol s enclosed in quotation marks, e.g., "PLUSO, where a term is expected, it
abbreviates the LITATOM corresponding to s.

Example: When we write OABC" where a term is expected we mean the LITATOM corresponding to
ABC, i.e., the term

CPMA (COW 66 (COW 66 (COW 67 0)))).

The use of the quotation mark convention is confined to the formal explication of the theory. In the
implemented syntax we have a much more elaborate convention that permits the abbreviation of
arbitrary explicit values.

We now define the notion of 'quotation.' We use LITATOMS to represent the variable and function
symbols and LISTPs to stich the pieces together. However, we desire also to permit explicit values to be
quoted in a special way. This makes the notion of 'quotation' depend upon the notion of 'explicit
value,' which, recall, involves a particular history h from which the constructor and bottom functions are
drawn. This is the only sense in which the notion of 'quotation" depends upon a history.

We say e is a quotation of t (in some history h which is implicit throughout this definition) iff e and t
are terms and either (i) t is a variable symbol and e is the LITATOM corresponding to t, (ii) t is an
explicit value term and e is (CONS 'QUOTE' (CONS t 'NIL')), or (iii) t has the form (fn al ... a) and e
is (CONS efn elst) where efn is the LITATOM corresponding to fn and elst is a 'quotation list' (see
below) of a a ... a.

We say elst is a quotation list of tlst (in some history h which is implicit throughout this definition) iff
elst is a term and tlst is a sequence of terms, and either (i) tlst is empty and elst is "NIL' or (ii) tist
consists of a term t followed by a sequence tlst' and elst is (CONS e elst') where e is a quotation of t and
elst' is a quotation list of tist'.

Examples: Below we give some terms and examples of their quotations.

term quotation

ABC *ABCs

(ZERO) (COr 'ZERO' 'NIL')

(ZERO) (aRE '"XYTE'
((EO (ZER) 'NIL'))

(ADDI X) (COW ADD1'
(COW "X' 'NIL'))

The meta axioms for f, where f is a function symbol of arity n, are given below. In the formulas we use
'f' as a metavariable denoting the LITATOM corresponding to f and nn as a metavariable denoting the
NUMBERP corresponding to n.

OEUAL APPLY "f' L)
(f (CAR (CDR L)) ... (CAR (CDP - L))))

(EQUAL (AI'rM Of') nn)

A term t is tame (in some history h which is implicit throughout this definition) ift either (i) t is a
variable, or (ii) t is a call of a function symbol fn on arguments al, ... , a., each ai is tame, and one of the
following obtains:

e fn is INTERPRET and a1 is a quotation of a term t1 , ti is old in h, and ti is tame; or

e fn is INTERPRET-LIST and a1 is a quotation list of a sequence of terms tt,t ... titk, each tj'j
is old in h, and each t,. i is tame; or

" fn is INTERP, a, is an explicit value and either (i) al is not ILIST8 and a is a quotation of a
term t2 , t2 is old in h and t2 is tame, or (i) aI is *LIST* and a3 is a quotation list of a

sequence of terms t,2 tik, each i2,i is old in h and each t, i is tame; or

" fn is FOR, a. is a quotation of a term t3 , ta is old in h, and t3 is tame, and as is a quotation of

a term t., ta is old in h and t5 is tame; or

" fn is not INTERPRET, INTERPRET-LIST, INTERP, FOR, or APPLY.

Note that any term not calling INTERP, INTERPRET, INTERPRET-LIST, APPLY or FOR is tame.

Furthermore, if the only function symbol called among those just listed is FOR, then the term is tame
provided only that the third and fifth arguments of the FOR are quotations of old, tame terms.

Examples: The following terms are tame:

X

(ADD)0
(IM1ME (COM "AMD1" (CONlS 0X8 ONIL,))

A)

(INT "LISr
(CONS (CONS NAM12 (CYE 0X6 OKILO)

(ONS OY=

"NIL))
A)

The last two examples may be displayed in the implemented syntax (as opposed to the simple syntax) as
follows:

(IMMwREr '(ADDI X0 A)

(INTP 'LIST "CADD1 X) Y) A)
The following term, displayed in the implemented syntax, is tame

(I'MEPR r '(IMIEPREr 'CADD1)0 A) B),

even though the interpreted form involves INTERPRET. The term (INTERPRET (CONS FN ARGS) A)
is not tame because (CONS FN ARGS) is not the quotation of a term.

A term t contains a hidden call of a function symbol fn (in some history h which is implicit throughout
this definition) iff t is a call of a function symbol fn on arguments a,, ..., an and either one of the ai

contains a hidden call of fn or one of the following obtains:

* fn is INTERPRET and al is a quotation of a term t, and ti either calls fn or contains a

hidden call of fn;

o fn is INTERPRET-LIST and a, is a quotation list of a sequence of terms t 1J, ..., tik and some
tl i either calls fn or contains a hidden call of fn;

*fn is INTERP, a, is an explicit value and either (i) a1 is not OLIST" and a is a quotation of a
term t2 and t2 either calls fn or contains a hidden call of fn, or (ii) al is "LIST" and a2 is a

quotation list of a sequence of terms t2,1 ..., t2,k and some t2 ,i either calls fn or contains a

hidden call of fn;

e fn is FOR and either (i) a3 is a quotation of a term t3 and t3 either calls fn or contains a

hidden call of fn or (ii) at is a quotation of a term t% and t8 either calls fn or contains a hidden

call of fn;

10

Examples: Suppose FN is a function symbol of 1 argument. Then the term (ADDI (FN X)) calls FN
but contains no hidden calls of FN. The term (ADDI (INTERPRET (CONS "FN" (CONS "X" "NILO))
A)) does not call FN but does contain a hidden call of FN.

We say that a term t governs an occurrence of a term s in a term b iff either b contains a subterm of

the form (IF t p q) and the occurrence of s is in p, or if b contains a subterm of the form (IF t' p q), where
t is (NOT t) and the occurrence of s is in q.

Examples: The terms P and (NOT Q) govern the first occurrence of S in:

(IF P
(IF (IF Q A S)

S
B)

C)

The terms P and (IF Q A S) govern the second occurrence of S.

2. The Formal Theory
We now present the axioms and rules of inference of our logic.

The axioms presented in the format:

Defining Axiom.
(f x, ... x,) = body

have the special property that it can be shown (in a suitable theory of sets) that one and only one function
f satisfies the equation.

In general we use the principle of definition

Definition.
(f x, ... xz) = body

to add such axioms. However, the admissibility requirements on the principle of definition require that
certain theorems be provable - theorems that in fact guarantee that one and only one function satisfies
the equation. However, until enough of the logic has been built up, the required theorems cannot be
proved.

Thus, the presentation of the logic is structured as follows. First we list a collection of axioms defining
many of the most primitive function symbols. Then we present the induction principle and the extension

principles, including the definitional principle. Then we invoke the definitional principle to add the
definitions of many useful functions.

2.1. TRUE, FALSE, IF and EQUAL

Axiom.
T F

Axiom.
X = Y -> (EM.LAL X Y) = T

Axiom.
X 0 Y -> (EAL X Y) = F

11

Axiom.

X=F-> (IFXY Z) =Z

Axiom.
X 0 F -> (IF X Y Z) = Y.

Defining Axiom.
CmUEP x) = (UJAL X T)

Defining Axioa.
(FALSEP :) = (iWJAL X F)

Defining Axiom.

OIT P)

(IF P F T)

Defining Axiom.
(AND P Q)

(IF P (IF Q T F) F)

Def ini Axiom.
(Oltp

(IF P T (IF Q T F))

Defining Axiom.
(I)FLIES P Q)

(IF P (IF Q T F) T).

2.2. Natural Numbers
We assume the shell axioms for

constructor ADDI1 of one argument
with bottom object ZERO,
recognizer NMBM,.
accessor SUB1,
type restriction <ONE-OF. (MI)ERP)>,
default function ZERO.

We now add three additional axioms about COUNT.

Axiom.
(CMER? COxr X))
Axiom.
(EWAL (COUNT T) 0)
Axiom.
(EJAL (CUNT F) 0)

We now introduce the axiom defining PLUS, which was used in the shell axioms.

....q_I

12

Defining AIim.
M7lOPXo

(Ut (JUAL x 0) (NOTr Oue x)))
Defining Axiom.
(FX x) = (IF (OuM X) X 0)

Defining Axiom.
MUE X Y)

(IF (ZEOP x)
(FIX Y)
(ADDI (POUS (SUB1 x) Y)))

2.3. Ordered Pairs

We assume the shell axioms for

constructor CONS of tvo arguments
with recognizer LISTP,
accessors CAR and CDR,
default functions ZERO and ZERO.

2.4. Literal Atoms
We assume the shell axioms for:

constructor PAC of one argument
recognizer LITATUI,
accessor UAQC,
default function ZERO.

2.5. Negative Integers

We assume the shell axioms for

constructor MINJS of one arument
with recognizer NFJATIVEP.
accessor N3ATIVE.GJS,
type restriction <ONE-OF, (N&HBEP)>,
default function ZERO.

2.6. Ord~nal.

We now use NUMBERPs and LISTPs to represent the ordinals up to epsilon,. The table below

illustrates our representation. The notation used is that of the impleme; ted syntax, not the formal
syntax.

ordinal representation
0 0
1 1
2 2
3 3

V (I'. 0)

13

w+1 (1.1)
v+2 '(1 . 2)

2W (I 1 . 0)

(2 .0)

''4w+3 (2 1 . 3)

W3" (3 .0)

•((i .0) .0)

We assume the following axiom defining LESSP, the less than relation on the natural numbers.

Defining Axilm.
CIEMSP X Y)

(IF (ZERO? Y)
F
(IF (ZEOP)

T(LSP(st13) (e UB1 Y))))

The less than relation on the ordinals is then defined as follows:

Defining Axia.
(ORD-LESSP X Y)

(IF (NLISTP X)
(IF (NLISTP Y)

(tLSsP X Y)
T)(IF (NLIM'P Y)
F
(IF (ORD-LFSSP (CAR X) (CAR Y))

T
(AND (EQJAL CCAR X) (CAR Y))

(ORD-LESSP (CDR X) (CDR Y))))))

The function for recognizing ordinals is defined as follows:
Defining Axilom.
(ORDINA.P) = (OR (EQUAL X 0) (ORDP))

where

Defining Axiom.(oRP.D X)

(IF (LISTP)
(IF (MMEMP J) (NUT (EQUAL X 0)) F)
(AND (ODP (CAR X))

(ORDP (CDR X))
(IF (LIST? (CDR J))

(Wrr (0RD-LESSP (CAR J) (CADR JO))
T)))

Our principles of induction and definition are based on the assumption that ORD-LESSP is well-founded

14

on the ORDINALPs. That is, there is no infinite sequence On, O1, 02, ... with the property that for each
natural number i, (ORDINALP oi) and (ORD-LESSP o1+ oi).

The well-founded lexicographic relation on n-tuples of natural numbers induced by LESSP can be
obtained by an appropriate use of ORD-LESSP. For example, suppose if il, i i, and j. are all
NUMBERPs. Then the pair <i,j,> is lexicographically smaller than <4j4> precisely when(0RD-LES (OW (ONS It 0) Jr)

(5M (COW 12 0) J2)) .
2.7. Basic Mets Axioms

In general, every history will include the meta axioms for every function symbol used in the axioms of
the history with the exceptions of APPLY and UNDEF. The axiomatic acts (with which the user
constructs histories) are defined to add the appropriate meta axioms for each new function symbol.
However, in constructing the basic axioms we have not yet begun to use the axiomatic acts and thus have
to assume the meta axioms explicitly for each function symbol introduced so far.

We assume the meta axioms for the function symbols TRUE, FALSE, IF, EQUAL, TRUEP, FALSEP,
NOT, AND, OR, IMPLIES, COUNT, ADDI, ZERO, NUMBERP, SUBI, ZEROP, FIX, PLUS, CONS,
LISTP, CAR, CDR, PACK, LITATOM, UNPACK, MINUS, NEGATIVEP, NEGATIVE-GUTS, LESSP,
ORD-LESSP, ORDP, ORDINALP and ARITY.

We assume the following axioms:

CEWrAL "ARIT APPLY*) 2)

CWAL (ARI7Y GLU) 1)

2.8. Induction
The rules of inference of our logic consist of the usual rules of inference of propositional calculus with

equality, including the rule that any instance of a theorem is a theorem, together with the following
principle of mathematical induction:

Suppose:

Ca) p is a term;
b) m is a function symbol of n arguments;

Cc) x are distinct variables;
Cd) qj, ... q o are terms;

(a) . . h are positive integers;
(f) it is a theorem that (ORDINALP (mx, ... xs));

and
(g) for I<kand < , s,

is a substitution and it Is a theorem that:

(DIPLIES q, (OD-LESSP (mz ... %)/a,
Cm; ... X))

Then p Is a theorem if

(LIES (N (NOT q) ... (NOT c))eOT
p)

Is a them and

for each M~ik.

p)

is a theorem.

2.0. The Shell Pflnelple
The axiomatic act:

Shell Definition.
ifadd USel consct of n met

1thpt =02&lly. botta Tunctonbti)
eonizer r,

accessors anc I- MInc
type restrictions tr,... tr,. and
default functions dv1, ... dva.

is admissible under the history h provided:

(A) const IS a new function symbol of n arguets,
(bt. Is a nev function symbol of no0 arguments.
If aL bott obj ect is supplied)., r. acj1 . .I
Ac. are new function symbols of one argument.
and all the above function symbols are distinct;

(b each trl is a type restriction over the recognizers
of h together with the symbol r;

(c for each i, dv1 Is either bt. or one of the
bottom functions of h; and

(d) for each i, if dv, Is bta then r satisfies tr1
and otherwise the type of dv, satisfies tr1 .

If admissible we add the shell axioms for
constructor const of n arguments
with (optionally, bottom function btm)
recognizer r,
accessors Sc1. . . .ica.k
type restrictions trl, ... tr,, and
default functions dv1,, dv5.

along with the meta axioms for conat, r, ac, ... , ac., and (if btm was supplied) btm.

If the tri are not specified, they should each be assumed to be <NONE-OF,(>.

I0

2.10. The Principle of Definition

The axiomatic act:

Definition. (f x, ... zz) = body

is admissible uader the history h provided:

(a) f Is a function symbol of n arguments and Is new in h;

(b) ;. are distinct variables;

c) body is a torn and mentions no symbol as a
variable other than x1 ja;

(d) body is a tame term In histor7 h;

(e) body contains no hidden calls of f in history h; and

f) there is a function symbol a of n arguments. such
that (I) (ODINALP (m X; ... %))
can be proved directly In h. and (i) for each
occurrence of a subterm of the form (f yj ... ya)
In body and the terms t1 , tk governng It,
the following formula can be proved directly In h:

(CIU'E (AND ti ... tk)@T
(OD-LESSP (yj ... y.)

(mxi .

If admissible, we add the meta axioms for f and the axiom:

(f x, ... xI) = body.

2.11. The Principle of Reflection

The axiomatic act:

Reflect. (f x, ... Ir) = body

is admissible under the history h provided:

(a) f Is a function symbol of n arguments and is new In h;

W(b) 3a are distinct variables;

C) body is a term and mentions no symbol as a
variable other than X1 .

(d) body Is a tame term in history h;

(C) body contains no bidden calls of f In history h;

(f) there is a function symbol m of n arguments,
a function symbol f of n arguments, and a term
body' obtained by replacing every occurrence of f

L

17

as a function symbol In body by f. such that
(1) (oINA.P Cm11 X ... i.)) can be
proved directly In b. (11) the formula
(EMUA (f" x ... zz) body')
can be proved directly In h and (iii) for each
occurrence of a subterm of the form (f I Y -" ya)
In body' and the ters t' ,'t governing it.
the following formula can be proved directly in h:

ClEMLIES (AND t t.)GT
(OR-LESW Ca yj ... y.)

(amx, ... XI)))

ik admissible, we add the meta axioms for f and the axiom:
(f X, ... zz) = body.

2.12. The Principle of Declaration

The axiomatic act:

Declare. (f X, ... 'a).

is admissible in history h provided that:

(a) f is a function symbol of n arguments and Is new in h; and

(b) xi xa are distinct variable symbols.

The axioms added by an admissible declaration are the meta axioms for f.

2.13. Umeful Function Definitions
We now introduce a variety of useful functions. These functions are part of the basic theory either

because (i) they are used in our implementation of the interpreter (e.g., LOOKUP), (i) we have found it
necessary, from a practical point of view, to build knowledge of them into the theorem-prover (e.g.,
DIFFERENCE is used in the linear arithmetic decision procedure), or (iii) the Yon Neumann machine on
which the theorem-prover runs provides means of computing the functions that are significantly faster
than merely compiling the recursive definitions (e.g., QUOTIENT). Our interest in computational
efficiency stems from our desire that the logic be a useful functional programming language and not from
theorem-proving considerations. Each of the following functions is introduced with the principle of
definition and hence for each we also assume the corresponding meta axioms.

We first define some useful functions on the natural numbers.

Definition.
(GRFA1,rP X Y) = (LESP Y X)

Definition.
XL, x Y) = OM)T (LESSP Y x))

Definition.
(GE X Y) = (NT (LEE P X Y))

Definition.
(4AX X Y) = (IF (LESP X Y) Y (FIX)0)

18

Definition.
(DIFFERNC I J)

(IF (ZOP I)
0
(IF (ZEROP J)

I
(DIFlUDB (3.31 1) (suet J))))

Definition.
(TM S IJ)

(IF (ZERa I)
0
(us J CrDEU (33 I J)))

Definition.

(IF (ZERO? J)
0
(IF (LESSP I J)

0
(ADD1 (OTIEr (DIFFERENE I J) J))))

Definition.
(REKAINDER I J)

(IF (ZERO? J)
(FIX I)
(IF (LESW I J)

(FIX I)
(ROWIDER (DIFFEREC I J) J)))

Next we define some useful list processing functions.

Definition.
(NLISr X) = (loT (LISTP X))

Definition.

(IF (LISTP LST)
(ADDI OM (CDR LST)))
0)

Definition.
02MBER X LST)

(IF (NLSTP 1ST)
F
(IF (EWAL X (CAR 1ST))

T
006M X (CDR LET))))

Definition.
(UNION X Y)

(IF (LISTP X)
(IF 0I0 (CAR X) Y)

(UNION (CDR X) Y)
(COW8 (CAR X) (UNION (CR X) Y)))

Y)

19

Definition.
(SUErP X Y)

(IF OLIWIP X)
T
(IF OMU (CAR X) Y)

(mM-P (CDR)0 Y)
F))

Def inition.
(DD-T-S~r X SLr)

(IF OUM X SE)
SET
(COW x SEr))

Definition.
(APPED X Y)

(IF (LIS7? X)
(COW (CAR X) (APPD (CDR X) Y))
Y)

Definition.
(LAST L)

(IF (LIST? L)
(IF (LISTP (CDR))

(LAST (CDR))L)
L)

Lbfinition.
(LOCKUP X ALIST)

(IF OLISTP ALIST)
0
(IF (AND (LISTP (CAR ALIS))

(EW1AL X (CAR (CAR ALIST))))
(CDR (CAR ALIST))
WOW X (CR ALIST))))

2.14. The Interpreter
Definition.
(TME-FUOR)O

(IF (NLISTP X)
T

(IF (EW A (CAR)O fIMWU)
(AND (LISTP (CAR (CR2)0))

(W AL (CAR (CAR (CR2 X))) 89=0E))
(IF (EWL (CAR X) ,IKfERPIEr,)

(AND (LISTP (CAR (CDR X)))
()AL (CAR (CAR (CDR X))) §JUMO))

(IF (WJAL (CAR X) ,INIUMM-LIST')
(AM (LIST? (CAR (CDR X)))

(WAL (CAR (CAR (C R 0)) O'Q='))
(IF (EWA (CAR X) ,FOR')

(AD (LIST? (CAR (CDR8)0))
Le(WAL (CAR (CAR (CR 8))) QLKTIE))

((OWUA (CAR X) ,APPLY)))))))

The following three axioms are inadmissible under the principle of definition because the bodies are not

20

tame. However, if UNDEF is defined as an arbitrary function of one argument and APPLY is defined to
satisfy all of the meta axioms in a history (which is always possible), it can be shown that there exists one
and onl one function satisfying each of the following equations.

Definaing Axiom.
(MWER FIG FORM ALIST)

(IF G(1AL FLG §LIST0)
(IF O1LIWI? F0

(IZR FLG (CDR FORM) AiIST)))
(IF (LITATOM FORM)

(LOlC? FOM ALIST)
(IF 01LISTP FOM

FORM
(IF (FQ4JAL (CAR FORM mQLIE)

(CAR, (CDR FOPO)
(IF (TAME-FORMf FORM)

(APPLY (CAR FORM
(INrER? sLISTG (CDR FORM) ALIMf)

CJDEW (alE FORM (CONS ALISr *NIL))))))))
Def ining Axiom.
(INTERhFREr FORM ALIST) = (INTER T FORM ALIST)

Defining Axiom.
(INlEPREr-LIST iSr ALIST) = (INTER? *LIST" LSr ALIST)

We assume the meta axioms for INTERP, INTERPRET, and INTERPRET-LIST.

2.16. Quantification

We now define our general purpose quantifier function FOR.

Def inition.
(QUANIFIER-INITIAL-VAU)E FN)

(IF (EQUAi.. FM 'ADD-TO-SET') 'NIL'
(IF (EW&A FN 'ALWAYS') T
(IF (WIA FM OAPPND) 'NIL'
(IF (EJAL FN OLMI') 'NIL'
(IF (EQAL FN *aOUNr') 0
(IF (EW&A FM '[X)-RKRN') 'NIL'
(IF (EQUML FV 'EXISTS§) F
(IF (EW&A FM @MAX§) 0
(IF (EQJAL FN OXXJTIPLY9) I
(IF (EW&A RI 'SUtM') 0
(IF (EQUAL RN 'UNION') 'NIL§

21

Definition.
(MJ IFIER-OMATION FN AG RET)

(IF cO AL FN "ADD-To-sEr') CADD-To-sEr AMG REMT)
(IF (EWiAL FN "APPEX)) (APPEND AM REST)
(IF (EWA FN a("M3 r) (COWS AM REST)
(IF (EQAL FW "CaWr') (IF AM CADDI REMS REM
(IF 0MUAL I "DO-REIU) AMG
(IF (EMJAL FR OCIS'1I) (OR AG REMT)
(IF (OQAL FN "MAXr) OMAX AG RE
(IF (EI1AL FN "kILTIFLY') (TCmm A RE)
(IF (E QAL N "SUJ') (PU.1 AM RET)
(IF (E L RI "UNION') (UWION AM REST)

The following axiom is inadmissible under the principle of definition because the body is not tame.
However, under the same conditions on UNDEF and APPLY discussed above, it can be shown that one
and only one function satisfies the axiom.

Defining Axicm.
(F0R V L (OND OP BODY A)

(IF (NLISTP L)
(QUANTIFIER-INITIAL-VALE 0P)
(IF (IEIPPE CaON (CO NS (CO V (CAR L)) A))

(QUAWIFIE-OPERATION OP
(IN'ERPREr BODY (CONS (CONS V (CAR W))
(FOR V (CR L) COND OP BODY)

OM V (CDR .) QCON) OP BODY AM))

We assume the meta axioms for FOR.

3. The Implemented Syntax
The syntax used in the theorem-prover is somewhat more elaborate than the formal syntax. Every

formula in the implemented syntax abbreviates a formula in the formal syntax, according to conventions
described in this Section. However, not every formula in the formal syntax can be so abbreviated. For
example, in the formal syntax T is a variable symbol, while in the implemented syntax T abbreviates the
term (TRUE) and there is no way to write a reference to the variable symbol T.

The implemented syntax is complicated by three factors. First, we use the LISP reader to parse user
typein into terms and thus must describe the lexical analysis performed by that system. This includes

handling of the read macro character '. Second, we adopt the LISP 'quote' notation for certain explicit
values, including 'dotO notation for LISTP constants. Third, we provide a variety of abbreviation
conventions which are context sensitive in the sense that they are not applied to 'quoted' constants. For
example, while 1 is usually thought of as an abbreviation of (ADDI (ZERO)) not all occurrences of 1 can
be so replaced. In particular, (QUOTE 1) and (QUOTE (ADDI (ZERO))) denote two different constants
(the rnt is a NUMBERP and the second is a LISTP).

In order to define our syntax precisely we exhibit the lexical analyzer, parser, and term recognizer as
functions defined in the formal logic itself. We ultimately define the function ISYNTAX which takes as

input a list of numeric character codes and delivers either F or the quotation of a formal term. Suppose
stream is the CONS nest around 'NIL' of the ASCII character codes of the characters in the sequence
s. If (ISYNTAX stream) is F, then s is an ill-formed expression in the implemented syntax. Otherwise
(ISYNTAX stream) is the quotation of a formal term t and s is a well-formed expression in the

22

implemented syntax and denotes the term t.

3.1. Examples of the Implemented Syntax

In this section we illustrate the implemented syntax by exhibiting some theorems about ISYNTAX. To
make the examples more succinct, we first introduce some notational conventions.

We use the notation IsI, where s is sequence of ASCII characters other than the vertical bar character, to
denote the CONS nest around 'NIL' of the sequence of ASCII character codes for the successive
characters in s.

Some of the relevant ASCII codes are:
char code char code

<spawce> 32 0 48 1
39 1 49

) 41 9 67
+ 43 A 65

I - 451 B 68146 B
I481 .. .

I I Z 901

For example, I(A. 1' is an abbreviation for

(CNS 40 (CONS 65 (COM 46 (CONS 32 (CONS 49 (CONS 39 "NIL§))))))

We say e is the primitive quotation of t iff e and t are terms and either (i) t is a variable symbol and e is
the LITATOM corresponding to t or (ii) t has the form (fn a1 ... a5) and e is (CONS efn elt) where efn is
the LITATOM corresponding to fn and elst is the CONS nest around 'NIL" of the primitive quotations of
each of the a,. We will sometimes write Itj to mean the primitive quotation of t.

Thus, JAI, the primitive quotation of the variable symbol A, is 'A' or, equivalently, (PACK (CONS 65
0)). [(CAR A)] is (CONS -CAR- (CONS -A- -NIL')).

The primitive quotation of explicit value terms are cumbersomely large. For example, 10j is (CONS
'ZERO- -NIL') and I1 is (CONS 'ADDI" (CONS (CONS 'ZERO- 'NIL') 'NIL')). ['A'] is shown
below:

(CM "PAO('
(CON (CaM OCNS' (CrE [66] (CM [0] ENIL')))

ENILE))

We now illustrate the implemented syntax. Informally speaking, the expression (CONS T NIL) in the
implemented syntax abbreviates the formal term (CONS (TRUE) -NIL'). This statement can be made
precise as follows:

Theore.
=UAL (ISrrX I Ca T NIL)I) [(COm ME) 'NILE)]).

In general, if iterm is a string of ASCII characters and term is a formal term, and (EQUAL (ISYNTAX
litermi) [term]) is a theorem, then we say iterm is an implementation term that abbreviates term.

Each of the iterms below abbreviates (CONS (TRUE) 'NIL'):

Itere

23

(Cl T NIL)

(CON T

(CONS)IL

T NIL

(COMa T ;this Is a ceent
;ad so Is 1ts.

NIL ;and here Is another
)

Here are some other example of iterms and the terms they abbreviate.

1ters term

(CONS 2 -1) (CONS (AMD (ADDI (ZERO)))
OINUS (ADDI (ZERO))))

(LIST A B 0) (COM A (COM B (C0 C "NILO)).

(CADR)X (CAR (aCR (CDR))).

(TI I J K) (TIME I (TIER J K).

(A I IWECO)) (CM "A"
(aON (ADDI (ZER))

(coM "CE @NIL@)))
(QU=E (A I . 0)) (OM DAG

(CONS (ADDI (ZERO))
(ZERO)))

(Q.UME (T *I*TRU) (COM "T"
(COM T "NIL8))

€9 M'E (A.D 30) (COW "O~A1 (COM 0X§ "NL'))

The last example illustrates one of the convenient aspects of the implementation syntax. If t is a formal
term then (QUOTE t) is an implementation term that abbreviates a quotation of t.

The 'single gritch' character, ',can be used to embed the following well-formed expression in a
QUOTE. Thus:

itesi term

'A "A"

' (ADDI X) (COM *ADD1 (CONS §X0 OWL'))

(A 'B)) (ONS 'A"
(OMS (CONS ORum'O

(COM 9B4 'NIL'))
@NIL'))

Our implementation of the QUOTE convention has special provisions for the inclusion of literal atoms
that do not correspond to symbols (e.g., (PACK (CONS 64 0))) and the inclusion of user introduced shell
constants. Such constants are written down using the special token l*QUOTE.

24

For example, the following implementation term

(QWT (C B A (*,Q1E PACK (64 . O))))

abbreviates the same formal term as

(COWU (PACK (CM4 67 0))
(C1 (PAC (OS 6 0))

(aa (PAOC (a O 0))

In order to further illustrate use of *I*QUOTE, let us extend the initial history with the axiomatic act:

Shell Definition.

Add the shell e of 2 ents
Lith bott function EPY-STACK,reco*nizer STIACKF,
accessr TOP and POP,
type restrictions <ONE-OF, (Nl]M~aP)> and <OINE-OF, (ffTA()>
and default functions ZER and EM PTY-STACK.

Then the implemented term:

(LIST' 'A WIFTY-STA0
'1 (R01 2 (EMPTY-STAOO0))

represents the same formal term as represented by the implemented term:

*(A (*1*qUWTE EWMTY-STACIO
B (*1*Q=ArE RM 2 (*i*Q=.rE EMPTY-S"AQO))

However, use of *I QUOTE is restricted so that it cannot be used to represent explicit values that could

be written down inside QUOTE without use of *I'QUOTE. Thus, '((*I'QUOTE ZERO)) is ill-formed.

In addition, *I'QUOTE cannot be used to write down terms that are not explicit values, e.g.,

'((*I'QUOTE PUSH 2 3)) is ill-formed because NUMBERP, the type of 3, does not satisfy the type

restriction on the second argument of PUSH.

Finally, our implemented syntax contains an elaborate mechanism for the abbreviation of FOR

expressions.

In the implementation syntax one can either write a 6 argument application of FOR - in which case

each of the 6 arguments is simply translated - or one can write a 5 or 7 argument application. In the

latter cases, certain of the "arguments" are 'noise" words and others are treated as implementation terms

which are translated and then embedded in QUOTEs. In addition, when a 5 or 7 argument FOR is used

the translation routine automatically computes the association list used to assign values to the "freem

variables occuring in the expression. For example the implementation term

(FOR X IN L WHEN (LESSP X 100) SLIM (TIMES A B)

abbreviates same term as:

(FM 'X L '(LESSP X (W=TE 100)) 'SUN '(TDIES A CTD B))
(LIST (CMS 'A A)

(COW 'B B)))

25

L2. Some PuellmInary Conventions

In the next three subsections we define formally the lexical analyzer, parser, and translator. Because of
the need to determine whether a given term is an explicit value, we must provide functions that answer
such questions as 'is this the name of a shell constructor function?8 and 4what are the type restrictions
on this shell?*

We use three such functions.

1. SHELL.BTM-TYPE: If X is the quotation of the bottom function symbol of the shell class
with recognizer function symbol r, (SHELL-BTM-TYPE X) is equal to the quotation of r;
otherwise (SHELL-BTM-TYPE X) is equal to F.

2. SHELL-CONS-TYPE: If X is the quotation of the constructor function symbol of the shell
class with recognizer function symbol r, (SHELL-CONS-TYPE X) is equal to the quotation of
r; otherwise (SHELL-BTM-TYPE X) is equal to F.

3. SHELL-CONS-TYPES: If X is not the quotation of the constructor function symbol of some
shell class, (SHELL-CONS-TYPES X) is F. Otherwise, X is the quotation of some constructor
function with type restrictions <flgl,s,>, ... , <flgn,sD>. Let tri be the CONS nest around
8NIL5 of the LITATOMs corresponding to fli and each of the symbols in si. Then (SHELL-
CONS-TYPES X) is equal to the CONS list around 'NIL'0 of tr1 , ... , trn*

Each of these functions could be defined for a given history. For example, in the empty history:

(SHELa-87n-TYPE)O

(IF (EQUAL X 'TRUE') NTRUPE
(IF (EQUAL X @FALSER) 'FALSEP'

F)))

(SM~L-CONS-TYPE)

(IF (EQUAL X DADD10) ONUMBERP
(IF (EMA X 'CONS') 'LISIP'

(IF (EMA X 8KINUS) EN~rATIVEPO
F))))

(SH-COS-rY1W)0

(IF (OR (EQUAL X OADD0)
(EQUAL X WNWJS))

(Cal (CONS 'NO-f (CONS EMGIERPO NNWL))
'NILO)

(IF (EQUAL X 'CONS')
(CMl (MOM 'HONE-OF' 'NIL')

(CM4E (CONS 'NONE-OF' 'NIL')
'NIL'))

(IF (EQUAL X 'PAM'
(CON (CM4S 'DIE-OF' 'NIL')

'NIL')

26

3.3. The Formal Definition of LEXEMES

In this subsection *e define a function that takes as its argument a list of numbers and returns a list of
•lexemes." Each lexeme is either a positive or negative integer or is a literal atom obtained by PACKing
the sequence of character codes denoting the lexeme.

We start by naming and grouping certain ASCII character codes.

Definitions.
(ASCII-OPEI-PAREM) = 40 ;code for (
(ASCII-CaOSE-PARPN) = 41 ;code for)
(ASCII-SINuLE-MITCH) = 39 ;code for
(ASCII-SPACE) = 32 ;code for <space>
(ASCII-NEWLINE) = 141 ;Lisp Machine code for <nevline>
(ASCII-CARRIACE-REIURN) = 13 ;code for <cr>
(ASCII-LINEFWD) = 10 ;code for <If>
(ASCII-PLUS-SII) = 43 ;code for +
(ASCII-MIIWS-SIGN) = 45 ;code for -
(ASCII-DOT) = 46 ;code for
(AXII-SENI-COLON) = 59 ;code for

Definition.
(PAPMP N) = (OR (EQUAL N (ASCII-OPEN-PARENO)

(EU.AL N (AWCII-aLUSE-PAREN)))
Definition.
(WHITEP N) = (OR (EQUAL N (ASCII-SPAC.)

(OR (EQJAL N (ASCII-NELNE))
(OR (EQJAL N (AsII-CMAIAGE-REIR)

(EQUAL N (ASII-LINEFD)))))
Definition.
(ALpIArICP N) = (AND (LESSP 64 N) (LESSP N 91))
Definition.
(DIGITP N) = (AND (LES 47 N) (LESP N 58))
Definition.
(SIQIP N) = (OR (EQUAL N (ASCII-PLIS-SIQ))

(MJAL N (ASCII-MINUS-SIGN)))
The lexical analyzer uses white space, parentheses, certain occurrences of the single quote mark, and

semicolon to break the input stream into lexemes. The analyzer accumulates into a list the character
codes of each lexeme, in reverse order. Those lists having the syntax of an optionally signed nonempty
sequence of digits optionally followed by a decimal point are parsed into positive or negative integers.
The function NUMERALP recognizes such lists, using NUMERALPI to recognize optionally signed
nonempty sequences of digits.

Definition.
(NUMEALPIt A)

(IF (NLISTP A)
F
(AND (DIGITP (CAR A))

(OR LISTP (CDR A))
(OR (AND (SIQFP (CAR (CDR A)))

(NL.ISTP (CDR (CDR A)
(NIMER"i (CDR A))))))

Definition.
(MMIRALP A) = (AND (LIST? A)

(IF (EQAL (CAR A) (ASCII-DOT))
(NUIRALP1I (CDR A))
(HU I1 A))

27

(GEN-INTEGER A 1 0) returns the positive or negative integer denoted by A, provided A is a
NUMERALP.

Definition.
(GENI-INr A SHIFT N)

(IF (NLISTP A)
N
(IF (Ei.IA (CAR A) (ASCII-DOT))

(GEN-IwrTEt (CDR A) SHIFT N)
(IF (E=JAL (CAR A) (ASCII-PL-SIGN))

N
(IF (W AL (CAR A) (ASCII-IMNUS-SIGN))

0IMIB IN
(GE-INe 2R (aR A)

(TDES 10 SHIMT
(PLUJS N

(TIPES SHIFT
(DIFvEREDI (CAR A) 48))))))))

Those lexemes not parsed as numbers are treated as literal atoms obtained by PACKing up the list of
characters typed (using 0 as the final CDR). Since the characters are accumulated in reverse order, they
must be reversed before being PACKed.

Definition.
OMEVPWIE A PHANFA

(IF (NLIS7" A)
PNAHE

(REVPME (CDR A) (CONS (CAR A) PIW))

GEN-LEXEME generates each lexeme, given the list of character codes accumulated.

Definition.
(GEN-LE E A) = (IF (KMNERALP A)

(GEWINT A 1 0)
(PAC (REVPNAM A 0)))

Certain lexemes cannot be written down using our quotation mark convention because they are not the
quotations of variable or function symbols. We therefore define functions to permit us to refer to these
lexemes more conveniently.

Definitions.
(OPEN-PAR)O = (PACK (CONS (ASCII-OPEN-PAREN) 0))
(CLOSE-PAREN) - (PACK (ON (ASCII-CLOSE-PAR2I) 0))
(SI12JE(MrITC) = (PACK (CON (ASCII-SIN E-QMITM) 0))
(Or) = (PACK (CON (ASCII-DaT) 0))

EMIT is used to add a new lexeme to the emerging stream of lexemes. The first argument is the
accumulated list of character codes and the second is the rest of the lexemes. If the first argument is 0 it
means no character codes were accumulated since the last lexeme was emitted.

Definition.
(EMIT PHAIE LET) = (IF (EIAL PNAME 0)

LsT
(MN (GEN-LM PNANE LET))

IGNORE-COMMENT scans the input stream until it has passed a newline or carriage return/linefeed.

28

Definition.
(IQUMRE-ONMET ST1WA1O

(IF DUST? STREAM

(IF (EQUAL (CAR BIREAMD SI-OLIN.))
(aM mRFEAI)

(IF (AND (EQUAL (CAR STWWM
(ASII-AMIA-REuMO1))

(AND (LISP (CDR ~tREAM)
X.IAL (CAR (CR WAREO)

(IM"1 (CDR STREA))))

LEXEMES is the lexical analyzer. The first argument is the list of input character codes. The second
argument is the list of character codes accumulated for the current lexeme thus far. (LEXEMES
STREAM 0) is the list of lexemes.

Definition.

(IF (NLISTP ST&RW
(EMIT P.ANE NILG)

(IF (EQUAL (CAR STREW (ASCII-SEDI-LON))
(EMIT PKH

O((I NRE-<X f (CDR sMEO)
0))

(IF (Al) (EQAL (CAR STRXA) (ASCII-SINLE--IT H)
(EUAL PNAHE 0))

(EMIT (Com (CAR MSREAP 0)
M W (CD STMEAO 0))

(IF (PARDF (CAR STREAMP)(EMT PKAH
WaIT (CONS (CAR STREAPO 0)

(L ES (CDR STREAM) 0)))
(IF (WHITEP (CAR STREAM)

(EMIT PAHE (LE)XDES CDR STREA) 0))
(LEM (CDR BMEAJ

(CONS (CAR Sm PNAW))))))

We illustrate LEXEMES by exhibiting a few theorems about it.

(LEW4M I (AB DEF) I O) = (CONS (oIPEM-PAREN(ONS ABC"
(CONS "DEF"

(aONS (anM-PAR) IL9))))

L04W IX(A-B)ZI 0) = (CONS "X"
(CONS (OPEN-PARE)

(CONS "A-B"
(CONs (a.OSE-PA MEO
Cas ,z, 'NILO)))))

(LEEZ PA "B C'DI 0) = (CONS (SINGLE--(mITCH)
(CONS A'

(CONS (SINGLE-aITCH)
(CO (SIN 6E-(ITC)3 (

(CONS"B
(PA((CONS 67 (COWm 39 (COWs 68 0))))

29

(LEXW IA; CMlM
BI 0) @ (CC m A (COl B" "NIL'))

(LX IA.8. C 1O) =(COW (PACK (C O 66 (IS 46 (O 6 M))))
(COn (DOT)

(COW @C@ @NIL')))

(LXME 1-12 3. 4-5 6.71 0)

(CWlS -12.
(CONS 3.

(COW (PAOC (CM4E 62 (COWE 46 (COE 53 0))))
(awE (PAOC (Cn 54 (CIl 46 (COlE 6 0))))

"NIL'))))

8.4. The Formal Definition of PARSE and READ

We now define the function that attempts to parse a list of lexemes into an 's-expression.' We say x is
an s-expresi.,n if and only if either x is a NUMBERP, a NEGATIVEP, a LITATOM whose UNPACK is a
CONS nest arc-ad 0 of a sequence of ASCII codes, or a LISTP whose CAR and CDR are both recursively
s-expressions.

Our parser takes two arguments. The first is a list of lexemes. The second is a list used as a pushdown
stack on which lists are accumulated. Each element of the stack is called a 'frame' and is itself a list of
three items. Whenever the parser encounters an open parenthesis a new frame is pushed on the stack and
parsing continues with the character after the open parenthesis. One of the items in the frame collects the
s-expressions that are the elements of the list. When the s-expression is completely assembled that stack
frame is popped and the s-expression is added to the end of the list being assembled in the newly exposed
frame. When a single gritch is read, a count in the frame, initially 0 for each element, is incremented by
1. When the next element of the list is added it is first embedded in as many QUOTE expressions as
single gritches preceded it. When the dot lexeme is read, a flag in the frame is set and the next time an
s-expression is added to the list being assembled it is put into the final CDR instead of added as the last
element.

Here is the function that adds a new frame to the stack.

Definition.
(PUSH-FRAME STACO)

(CONS (CONS 'NIL' (CONS 0 (CONS F "NIL')))
STAcK

The following three functions return the three items in the top-most frame of the stack.

Definition.
(LIS T-BIE1G-ASS9MLIE STACIO = (CAR (CAR STAaO)

Definition.
(MxTE-Qr STAQO = (CAR CDa (CAR STA0K))

Definition.

(DOT-FLG STAOI = (CAR (CDR (CaR (CAR S'rAa)))

The following function increments the count of single gritcbes read.

30

Def inition.

(CON (COWu CT-WING-ASSORME SrAO
(035 (ADDI (%=r-0rN STAGO)

(ais (Wr-FILG STAOO ONIL§)))
(CDR 9rAOO)

The next two functions turn on and off the flag signalling that a dot has been read.

Def inition.
(SEr-DOTr-F1LG SrAO

(COW (COW5 CLIST-BENASSEBLE SroO
(CM5 gOL-arr STAO

(CONS T ONIL)))
(CMK SA0O)

Definition.
(UNSEr-DOT-FLG STACQ0

(CONS (CONS (LIST-BaI- ASSEMED STAaIO
(0315 (%.DTE-M4 SrAOO

(COWl F ONIL)))
(CDR STAOO)

KWOTEN is the function used to embed each s-expression in QUOTES.

Def inition.
0K'd0lD4 N)0

(IF (ZERO? 10
X
(COW 69U

(COW O(WTE2N (SUBI N) 30 ONIL)))

The next function adds its first argument to the list being assembled in the top frame of the stack,
taking account of the number of gritches that preceded it and whether the dot flag is set. Note that the
function resets the quote count to 0 in anticipation of the processing of the next element of the list.

Definition.
(ADD-ELMNT X STAQO0

(CONS (03MG (IF (DOT-R.G STACO
(APPEND (LIST-BEING-ASSEMBLED STACO

0WDTEf (QUOTrE-Q4T STACIO)0)
(APPEND (LIST-BEING-ASSMBLE SrACIO

(CO15 OwcT!! (WUO1E-0(STAOO)
ONIL)))

(CONS 0
(CONS CDOT-FIA STACO ONIL§)))

(CDR STAOQ0)

Here, finally, is the parser. The top-level call of the parser should have a stack with one empty frame
on it. The deepest stack frame is treated specially by PARSE: as soon as an element has been added to
it, parsing stops and the element is returned.

If the parser encounters ill-formed syntax - e.g., unmatched parentheses, illegal uses of the dot notation,
or unnecessary terminal lexemes after the completion of the parsing - it returns F.

31

Definition.
CPARSE L STAOO

(IF (NLISTP L)
F

(IF (EWJAL (CAR L) (OPEN-PARDO)
(PARSE (MR L) (RENH-FAME STA00)

(IF (EQUAL (CAR L) (0135E-PAREN))
(IF (OR (JLISTP STACK)

01LIS? (CDR STAOO))

(IF (AND (DOT-FLG (CDR SrAoO)
(OR (NLISTP (CDR L))

(NEr (EQUAL (CAR (CDR L)) (CLOSE-PARER))
F
(IF O1LISTP (CDR (CDR STAOO0))

(IF CLIS1? (IF CDOT-FLG (CDR STAOO)
(CDR (CDR L))
(CDR L))

F
(CAR (LIST-BED~i-ASSEMBLED

(ADD-Di
(LIS-EINGASSDELDM STACO
(CDR STAOO))))

(PARSE (CDR L)
(ADD-ELDMJ (LIST-BEING-ASSE..M STACO

(ODR STAMM)))
(IF (EMJAL (CAR L) (SINM.E-(RITCH))

(PARSE (CDR L) (BUJ9-QU=r-01T STA00)
(IF (EQUAL (CAR L) (DO)

(IF (OR (NLImST fAO
(NLISP O..IST-BEUG-ASSMM 9=0Q))

F
(IF (DOT-FLG STAOO

F
(IF (WIT (ZOP (QA3TE-01T STAOQ))

F
(PARSE (ODR L) (Sr-DOT-FLG STAO)

(IF (JLISTP STAQO0
F
(IF (AND) (DOT-FLG FrACOO

(OR (NLISTP (ODR L))
(Er (WJAL (CAR (ODR L)) (CAXs-PAREMO)

F
(IF (NLISTP (ODR STAQO0)

(IF (LISTP (ODR W)
F
(CAR (LIST-BEIW-ASS~Diz (ADD-ELDENr (CAR L) STAaoQ)

(PARSE (ODR L)
(UNBEr-DOT-FLG (ADD-ELDEEr (CAR L) STAOQ))))))

The reader is the composition of the parser and the lexical analyzer.

Def inition.
(READ STREAMD = (PARSE (LEMGIES S!TREAM 0)

(PUSH-FRAME 'NIL'))

We now illustrate READ by exhibiting some theorems about it:

(READ Il(A (B C) D)l1) =(OW1 @Am
(CONS (COW8 'B' (CM16'C' 'NIL'))

(CONS 'DO @MILO)))

32

MtAD I(A'BC0)1) = (CMGA*
WOM (GRE O.ur (cMMI GB §NILG))

(COW CV @IL)))

MRAD I(ADB 0 1) = (COin 8A8 (COS 86 ace))

MRAD I (A .(B . (C OM))1)
= (CM WA

(ME @B (cmacs C NILE))

(READ '((. 1) (B 2))I)

(CONS (CONS (CONS A 1)
(CME (alES OB 2) OIL))

ONIL))

(READ I OUTSI(CTIIE33 J) (ImWUP 'XALIST)

(CONS (CONS @TIESB
(alE 33 (CONS *J4 ONIL))

(alE (CONS NLJ1*

(CONS 6X' NIL))
(CONS 9ALIST6 NNIL)))

@NIL9))))

3.5. The Formal Definition of TRANSLATE and ISYNTAX

ISYNTAX is the composition of a function called TRANSLATE and the function READ above. Almost
all of this section is devoted to the definition of TRANSLATE and its subfunctions. TRANSLATE takes
as input an s-expression and produces either F or the primitive quotation of a formal term.

Roughly speaking, TRANSLATE transforms LITATOMs into themselves, provided they have the syntax
of our variable symbols, and transforms s-expressions of the form (CONS fn (CONS arg1 ... (CONS arga
-NIL-))) into (CONS fn (CONS arg', ... (CONS arg'. ONILO))), where arg'i is the translation of argi,
provided fn is the quotation of a function symbol of arity n. However, there are many special cases in
which more elaborate transformations are performed. The most complicated involve the extended
QUOTE notation for denoting explicit values .1-id the handling of FOR expressions.

We first define the function SYMBOLP which recognizes when a LITATOM has the syntax of the
symbols in our logic, i.e., is a sequence of alphanumeric characters or hyphens, beginning with an
alphabetic character.

Definition.
(LMAL-CHAR-aJC-SEQ1 Q)

(IF (NISTP Q
T
(AND (OR (ALPHABErICP (CAR L)

(OR (DIGIT? (CAR Q)
(EJAL (CAR Q) (ASCI I-MINUS-SIGNM)

33

Definition.

(AN (L r-P L)

(AND (EWAL (CDR (LAT L) 0)
OM (ALIHAE CP (CAR LW

(LErAL-aCHA-C0E-SE (CD L)))))

Definition.
(SY'MLP X) = (AND (ITATOI X)

OLGAL-HAR-CoE-SEQ (UNPACK X)))

TRANSLATE processes the submitted s-expression top-down, checking that each subexpression is legal
in the context in which it occurs. As it processes each legal subexpression it CONSes together the
primitive quotation of the formal term represented. However, if it encounters an illegal subexpression it
must return F as the top-level answer. Thus, instead of using CONS to construct the quotation,
TRANSLATE uses FCONS below.

Definition.

(FCON X Y) = (IF (AN X Y) (Cam X Y) F)

Perhaps the most complicated part of TRANSLATE is the transformation of QUOTEd expressions.
TRANSLATE transforms an input of the form (CONS "QUOTE" (CONS evg "NIL4)) into the quotation
of an explicit value, provided evg (8explicit value guts*) has certain properties.

For example, if evg is an integer, the QUOTE-expression is translated into the primitive quotation of a
nest of ADDI's around (ZERO), possibly with a top-level MINUS.

If evg is a LITATOM satisfying the restrictions on symbols, the QUOTE-expression denotes a PACK

expression. For example, the result of READing I(QUOTE ABC) is TRANSLATEd into the primitive
quotation of the PACK expression we abbreviate as "ABC" in the formal syntax: J(PACK (CONS 65
(CONS 66 (CONS 67 0))))].

However, not all LITATOM ev :. denote PACK expressions; we use two of the non-symbol LITATOMs
to stand for T and F. The two LITATOMs are those produced by READing l'ITRUEI and I*FALSE
and are returned by the functions EVG-TRUE and EVG-FALSE below.

If evg is a LISTP, e.g., the result of READing I(ABC . DEF), it represents a CONS, e.g., (CONS *ABC"
eDEFO), provided both the CAR and the CDR are evgs.

If evg is a LISTP whose CAR is a certain mark called the EVG-QUOTE-MARK, it represents a
nonprimitive shell object or munusual" primitive ones, such as non-symbol LITATOMs. The mark is the
non-symbol LITATOM produced by READing I**QUOTEI.

The complicated nature of our representation of explicit values stems from two desires. First, for
efficiency in the theorem prover, we have arranged for there to be only one way to represent every explicit
value as a QUOTEd evg. Second, we have arranged for the quotation of a term to be produced by
embedding the internal representation of the term in a QUOTE expression, permitting the efficient use of
meta" functions. These issues are dealt with at length in [metal.

We now begin defining the functions to manipulate evgs. ADDI-NEST returns the quotation of the
formal term denoted by a nonnegative integer.

L lm m t um m . . - -

34

Definition.
(ADDI-ES N)

(IF (maRP N)

(aiM NADDI
(CM4 (ADD1-ESr (5.31 N)) ONILff)))

Here are the son-symbol LITATOMs we use in evgs.

Definition.
(EY71

(PAMC (CONS 42
(CNS 49

(COWE 42
(aOW 84 (CONS 82 (CONS 86 (COW 89 0))))))))

Def inition.
(EVG-FALE

CPA((CONS 42
(COW 49

(Ca. 42
p(CONS 70 (CaN. 85 (aON. 76 (CONS 83 (COW 89 0)))))))))

Def inition.
cEVG-r-.FO

(PAC (aM 42
(CMIS 49

(COW 42
(an. 81 (CONS 86 (IM1S 79 (CONS 84 (COW 89 0)))))))))

In order for an evg to represent an explicit value it is necessary that its components represent explicit
values of the appropriate type. The following functions are used to check type agreement.

Definition. = (ILw4.TP M

(SH1LLL-TYPEP FM)

(IF (SHELL-aME-TYPE FN)
(SHELL-COMS-TYWE no)

p Definition.
(SHELL-TYE-W FM RErRIMrON)

(IF (WJAL (CAR RESTRcIMON) ONE-OF')
DEER (SHELL-TYPE no)

(CDR RESTRICrION))
(aJT 0U (HL-TYPE Ml

(CDR RESRICrIaM))))

SHELL-TYPES-OKP takes ns its first argument the quotations of n explicit value terms and as its
second argument a list of n type restrictions. The function checks that each explicit value term satisfies
the corresponding type restriction.

36

Definition.
(SI EL-TYP-OW TUMs REMICIONS)

(IF D1IS. ? Tom)
T
(AND (LIST? (CAR TER))

(AM (UE-TYPE-G-? (CAR (CAR TR))
(CAR RESmICrIONm))

(HEL-,-TYPES-W (CDR TEM)
(CR RSMICrImONS)))))

Here is the function that transforms X into the primitive quotation of an explicit value, or else returns F

signifying that X is not an evg. If FLG is "LIST" X is considered as a list of evgs instead of as a single

evg.

Definition.

(IF (EAL FLG "LIST)
(IF (LISTP V

"NIL9
(FCaOM (EYG T (CAR O)

(? VG 'LIST' (CDR J)))
(IF (ISTL? J)

(IF (MN3P J) (ADMi-NEST J)
(IF (NEXATIV17 J)(CONS "MINUS"

(amS (ADl-NEST OATIVE- TS))
'NIL@))

(IF (EQJAL X (EVG-TRUED) (am STUE" *NILO)
(IF (EQAL X (EVG-FALSE)) (CONS FALSE" "NILO)
(IF (SYNSCIP J)

(aN "FACK
(aim (EVG T (UNPA C)

"NIL))
F))))

(IF (EQUAL (CAR J) MYG-QUOT-MARO)
(IF (AND (LIST? (aR)

(AMl (EQUAL (ODR (LAST)) "NILO)
(AND (EMUAL (LE'MH (CR (CDR 0))

(ARTY (CAR (DR J)))
(AND (EVG "LIST" (ODR (ODR JO))

(AND (OR (-BMr-TYE (CAR (CDR J))
(AND (SHMLL-aDNS-nWEs (CAR (ODR M))

(SHMEL-TYPES-O (EVG "LIST" (CR (CDR 0))
(SHE2-COm-1wPS (CAR (OR M)))))

(IF (EQUAL (CAR (DR M)) PACKX)
(NOT (LUAL-,CHM-CME-SEQ (CAR (CR (CDR J))))
(IF (EQUAL (CAR (CDR J)) OMIN S)

(EAL (CAR (CR (ODR J)) 0)
(NOT (ORt (EAL (CAR (ODR J) ADDIG)

(OR (EQUAL (CAR (DR J)) .Zmao.)
(CEUAL (CAR (ODR J)) "C0m*)))))))))))

(CONS (CAR (DR O)
(EVG "LIST" (DR (DR JO)))

F)(F-CONS *CIONS
(FC'ONS (EVO T (CAR J))

(OM MG T (ODR J0) 'NIL'))))))

This completes the development of the functions for processing evgs.

38

The next function is the analogue of our notion of the Ofn nest around b for s.0 If FN is the LITATOM
corresponding to fn and L is a list of the primitive quotations of the terms tip ... , t.~, them (MAKE-TREE
FN L) is the primitive quotation of (fan tj ... (fa t, 1 3... If n<2, the function returns F.

Definition.
OWAK-TREE FN4 L)

(IF GLIU! L)
F

(IFOUTP(C LCA))
(IF2I (CARM (CDR (CD) LI'))
OFQU FN

MW~l (CAR L)
(FCONS 01AE-MVE F1E (CDR 1))

Our implemented notation includes the LISP convention for abbreviating nests of CARs and CDRs with
such function symbols as CADR, CADDR, etc. The following functions are used to implement this
feature.

CAR-CDRP recognizes those literal atoms which are written down with C as the first character, R a
the last, and A's and D's in between. The ASCII codes for A, C, D, and R are 65, 87, 88, and 82.

Definition.
(CAR-a2RWl L)

j (IF OLIB"!? L)
F
(IF OLISTP (CDR L))

(AND (EQUAL (CAR 13 82)
(EQUAL (OR L) 0))

(AM (R (EQUAL (CAR L) 86)
(EQUAL (CAR L) 88))

(CAR-ODRPI (OR L)))))

Definition.
(CAR-CDR?)0 = (AND CLITATCM)0

(AND (LIMTP (UNPAC))
(AND (EQUAL (CAR (UNPAC 30) 67

(CAR-CDRPi (CM (UNPAC 30)))))
This function constructs the quotation of the term denoted by a term beginning with a CAR-CDRP

symbol.

Definition.
(CAR-a-IM L)

(IF (MORST LL)!?1 (11.181? (CDR L)))

(IF (WJAL (CAR L) 65)
(CM1 'CAR'

(CONS (CAR-aR-EST (CM 13) 'NIL'))

We now move on to the transformation of FOR expressions. We first define convenient 'accessors' for
the components of the FOR term. Recall that we permit 5, 6, and 7 argument versions of FOR.

37

Definition.
(AB'rEIATED-F[I-VAR X) = (CAR (CDR X))

Definition.
(ABOEEVIATED-FR-RA1G X) = (CAR (CDR (CDR (CDR X))))

Def inition.
(ABBEVIAE-M-MMD)0

(IF (El (lU) 8)
(CAR (CR (CDR (CDR (CDR (CR X))))))
8T@)

Definition.
(ABBEtIATED-Fl3R-OP X)

(IF (EMIA UL2MM) 8)
(CAR (CDR (CDR (CDR (CDR (CDR (CDR X))))
(CAR (CD (CR (CR (CDR))))))

Definition.
(ABREVIATED-FOR-ODY X) = (CAR (LAfT)

The next function recognizes those LITATOMs that name the operations handled by FOR.

Definition.
(FR-OPEATIONP X)

(OR (EQUAL X @ADD-TO-SEr)
(OR (oJL X xALoM.YS

(OR (EQUAL X 8APPENE)
(OR (EQUAL X a)UMFT-)

(OR (EQUAL X 'aRJ?1r')
(OR (QUAL X "DO-REMN)

(OR (EQUAL X e"as')
(OR (EQUAL X MAX9)

(Of (EW& X ".ILTIPLYN)
(OR (EM X @SUM@)

(EQ UL X "UNION@)))))))))))

We now define the function that recognizes those FORs requiring fancy translation.

Definition.
(ABBREVIATED-FDRP)O

(AND (LISIP X)
(AND (EQUAL (CAR X) GFOR')

(AND (OR (EUAL (LEXMh x) 8)
(EQUAL (X) 6))

(AND (SYMBOL (ABEREVIATED-FO-VAR X))
(AND (NDT (OW& (ABERVIATED-FOt-VAR x) "NIL))

(AND (OT (WEQAL (ABH TMED-FO R-VAR 0 9T9))
(AND OCT (EWiA (A rEVIATD-F OR-VAR) F'))

(AND CMUAI (CAR (CR (CR)0)) @IN@)
(AND (OR M&IA (LENZI) 8)

(EQAL (CAR (CR (CDR (CDR (CDR X))))) .WHEN))
O-OPEATIOW (ABIEVIATED-FOR-OP 0)))))

One of the things we do with abbreviated FORs is to compute the association list that binds the 'free'
variables in the conditional expression and body. We keep those alists in alphabetic order.

ALPHABETIC-LESSP compares two LITATOMs and determines whether its first argument is

38

alphabetically smaller than its second.

Definition.
(ALPHABETIC-LFBSPI Li W2

(IF (NLISTP Li)
T
(IF (NLISTP 1.2)

F
(IF (LIESP (CAR Li) (CAR 1.2))

T
(IF (EM1A (CAR Li) (CAR 1.2))

(ALPHAETIC-LE~SP1 (CDR Li) (CDR 1.2))

Definition.
(ALPHABEIC-LSP X Y) = (ALPHABEIC-LESSPI (UNPACK)

(UNPACK Y))
Below we define an insertion sort function that sorts lists of LITATOMs alphabetically.

Definition.
CALPHAETIC-INSERT X LQ

(IF (NLISTP L)
S(ON X nNILO)

(IF (ALPHABETIC-LESP X (CAR L)
(CON X L)
(COW (CARL)

(ALPHABETIC-ISET X (CDR L)))))

Def inition.
(ALPHABETIZE L)

(IF (NLISTP LQ
L
(ALPHAETIC-ISET (CAR Q)

(ALPHABETIZE (CDR L))))

We next define the function that explores the quotation of a term X and collects the set of variable
symbols used in it. If FLG is OLISTI X is considered as a list of quotations instead of a isingle quotation.

Definition.
CALL-VARS FLG)

. 0 ~ (IF (EUAl. FLO mLISTO)
(IF (NLISTP)O

BNILO
(MNON (ALL-VARS T (CAR))

(ALL-VARS OLIST' (CDR))))
(IF (NLISTP)O

(CONS X GNIL)
(ALL-VARS @LIST@ (CDR X0)))

The function MAkKEALISTI takes a list of LITATOMs and returns the quotation of the alist in which
the quotation of each symbol is bound to the symbol. That is, if VARS is the quotation list of, say, A, B,
and C, then (MAKE-ALISTI VARS) is [(CONS (CONS NAN A) (CONS (CONS 'B' B) (CONS (CONS
NCO C) ONIL')))j

39

Definition.
GIAKE-ALISTI VARS)

(IF (NLISTP VARS)
(EVG T 'NIL')

(CN Come(OS COS
(cam (cow w~m

(COW (EVG T (CAR AS))
(CONS (CAR VARS) mNIL')))

(CONS (VWCE-ALISTI (Ca VARS))"NIL'))))

DELETE deletes the first occurrence of its first argument from its second argument. It is used to
remove the 'indicial' variable of a FOR statement from the list of variables that occur in the conditional
and body expressions.

(DELETE X L)

(IF (NLISr L)
L
(IF (JQAL X (CAR L))

(MR L)
(COW (CAR Q. (DELETE X (CDR Q))

Here is the function that constructs the alist for abbreviated FORs, given the indicial variable symbol,
the conditional expression, and the body.

Definition.
OCE-ALIS' VAR WHEN BODY)

OWA-ALISTI (ALPHAMZE (DELEM VAR
(UNION (AL-VARS T WM0

(ALL-VAM T BODY)))))

We finally define TRANSLATE. If FLG is 'LIST', X is considered to be a list of s-expressions to be
translated.

Definition.
(TRANMSLATE FLG X)

(IF (E JAL FLG 'LIST')
(IF (LIS'rP)Q

'NIL'
(FalS (TRANSLATE T (CAR)0)

(TRANSLATE 'LIST' (aR x))))
(IF (LSTP X)

(IF OUGEP X) (EVG T X)
(IF (ErATIVEP 0 (EVG T X)
(IF (LITATa1)0

(IF (EQUAL X 'T') (CONS 'TRUE' 'NIL')
(IF (EQuAL X 'F') (CONS "FALSE' 'NIL')
(IF (EUAL X 'NIL') (EVG T 'NIL')
(IF (LrMAL-QAR-COE-sEQ (UWACC X)) X

F))))
F)))

(IF (NOT (Er1WAL (CDR (LAST)) 'NIL'))
F

40

(IF (AND (LI"TP (C))

EQL (CDR (CD)) 'NIL,))
(EVO T (CAR (CDR 0))
F)

(IF (Of (EQAL (CAR)0 *NIL,)
(OR (EQAL (CAR)0 "T')

(OA (CAR X) "'F)))
F

(IF (EQUAL (CAR X .LIS)
(IF (TRANSLATE 'LIST' (CDR))

(IF OLIfl (CDR))
(EVC T 'NIL')
OWE-TREE "alS°

(APED (TRANSLATE ,LIST, (C DR)
(CtO (EJO T 'NIL')

"NIL))))
F)

(IF (CAR-aCP (CAR X))
(IF (AND (LISTP (CR X))

(AND (LISTP (CDR (CDR 0))
(TRANSLATE T (CAR (CDR X)))))

(CAR-Ca-NESr (CDR (1UACC (CAR X)))
(TRANLATE T (CAR (CR X))))

F)
(IF (EQUAL (MG (CDR X)) (ARITY (CAR)0))

(FCONS (CAR X) (TRANS.ATE 'LIST' (Ca X0))
(IF (QAL (CAR X) "F3O')

(IF (ABEVIATED-FURP X0
(Fat 'FOR'

(G T (AEO TE T --F-R-VAR)0)
(FaNS (TRANSLATE T (A RmEVIA1-FOR-RAN 2)0)
(FaNS (EVG T (TRAU TE T (AEVIAiT-Fc-F-WHN)0))

O'CONS (EVG T (ABMEVIATE-FOR-OP)0)
MONSm CEVG T (TRANSLATE T (ABBEVIATE-Fg-ODY)0))
cOatE OWAE-ALIST (ABBRLVIATED-FOR-VAR 20

(TRANLATE T (ABIREVIAT--FIR-WHN)0)
(TRAELATE T (ABREVIATED-FR-BODY 0))

F)
(IF (AND (LESSP 2 Q (LDN (CDR 0))

(Of (EQUAL (CAR X) AND')
(ORt (WAL (CAR X) "OR')

(OR (EQAL (CAR)0 'PLuS')
(EQAL (CAR)0 "TD4E')))))

OVAKE-TRM (CAR)0 (TRANSLATE 'LIST' (CDR 20))F))))))))))

The implemented syntax is defined by the function ISYNTAX:

Deflltion.
(ISYNTAX STREA1O = (TRA SLATE T (READ STREAM))

41

References
1. R. S. Boyer and J S. Moore. Metafunctioms: Proving Them Correct and Using Them Efficiently as
New Proof Procedures. In Thse Correctness Problem in Computer Science, R. S. Boyer and J S. Moore,
Eds., Academic Press, London, 1981.

11
400

* 0*

.1' e~ r t~ *4~r~jId4 1

